Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 21(9)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37755099

RESUMO

This work reports the detailed structure of fucoidan from Sargassum miticum (2SmF2) and its ability to potentiate the inhibitory effect of glycolysis inhibitor 2-deoxy-d-glucose (2-DG). 2SmF2 was shown to be sulfated and acetylated galactofucan containing a main chain of alternating residues of 1,3- and 1,4-linked α-l-fucopyranose, fucose fragments with monotonous 1,3- and 1,4-type linkages (DP up to 3), α-d-Gal-(1→3)-α-L-Fuc disaccharides, and 1,3,4- and 1,2,4-linked fucose branching points. The sulfate groups were found at positions 2 and 4 of fucose and galactose residues. 2SmF2 (up to 800 µg/mL) and 2-DG (up to 8 mM) were not cytotoxic against MDA-MB-231 and SK-MEL-28 as determined by MTS assay. In the soft agar-based model of cancer cell colony formation, fucoidan exhibited weak inhibitory activity at the concentration of 400 µg/mL. However, in combination with low non-cytotoxic concentrations of 2-DG (0.5 or 2 mM), 2SmF2 could effectively inhibit the colony formation of SK-MEL-28 and MDA-MB-231 cells and decreased the number of colonies by more than 50% compared to control at the concentration of 200 µg/mL. Our findings reveal the metabolically oriented effect of fucoidan in combination with a glycolysis inhibitor that may be beneficial for a therapy for aggressive cancers.


Assuntos
Melanoma , Sargassum , Humanos , Fucose , Polissacarídeos/farmacologia
2.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569428

RESUMO

Melanoma is the most aggressive and treatment-resistant form of skin cancer. It is phenotypically characterized by aerobic glycolysis that provides higher proliferative rates and resistance to cell death. The glycolysis regulation in melanoma cells by means of effective metabolic modifiers represents a promising therapeutic opportunity. This work aimed to assess the metabolically oriented effect and mechanism of action of fucoidan from the brown alga Saccharina cichorioides (ScF) and its carboxymethylated derivative (ScFCM) in combination with 2-deoxy-D-glucose (2-DG) on the proliferation and colony formation of human melanoma cell lines SK-MEL-28, SK-MEL-5, and RPMI-7951. The metabolic profile of melanoma cells was determined by the glucose uptake and Lactate-GloTM assays. The effect of 2-DG, ScF, ScFCM, and their combination on the proliferation, colony formation, and activity of glycolytic enzymes was assessed by the MTS, soft agar, and Western blot methods, respectively. When applied separately, 2-DG (IC50 at 72 h = 8.7 mM), ScF (IC50 at 72 h > 800 µg/mL), and ScFCM (IC50 at 72 h = 573.9 µg/mL) inhibited the proliferation and colony formation of SK-MEL-28 cells to varying degrees. ScF or ScFCM enhanced the inhibiting effect of 2-DG at low, non-toxic concentrations via the downregulation of Glut 1, Hexokinase II, PKM2, LDHA, and pyruvate dehydrogenase activities. The obtained results emphasize the potential of the use of 2-DG in combination with algal fucoidan or its derivative as metabolic modifiers for inhibition of melanoma SK-MEL-28 cell proliferation.


Assuntos
Laminaria , Melanoma , Humanos , Glucose/metabolismo , Laminaria/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Proliferação de Células , Desoxiglucose/farmacologia , Desoxiglucose/uso terapêutico , Linhagem Celular Tumoral
3.
Carbohydr Polym ; 318: 121128, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479440

RESUMO

Fucoidans are complex fucose-containing sulfated polysaccharides with pronounced anticancer effects. Their structure-anticancer activity relationships are difficult to determine due to fucoidans' complex, often irregularities-including structures. Fucoidan-active enzymes can be used for this propose. We have investigated two new recombinant endo-fucanases FWf3 and FWf4 from the marine bacterium Wenyingzhuangia fucanilytica CZ1127T that belong to the 107 family of glycoside hydrolases (GH). Both enzymes cleaved α-(1→4)-glycosidic bonds but in fucoidan fragments with different sulfation patterns. FWf3 is the first characterized endo-fucanase that cleaves glycosidic bonds between 2O- and 2,4diO-sulfated L-fucose residues. The obtained endo-fucanases were used to produce low- and high-molecular weight fucoidan derivatives with different sulfate group locations. Low- and high-molecular weight fucoidan derivatives rich with 2,4diO-sulfation were shown to inhibit MDA-MB-231 cell colony formation more efficiently than the native fucoidan and the derivatives sulfated otherwise. Such derivatives effectively suppressed the mitochondrial membrane potential of MDA-MB-231 cells and reduced the expression of the glucose transporter 1 (GLUT1). Co-treatment of MDA-MB-231 cells with the fucoidan derivatives and oligomycin (an OXPHOS inhibitor) resulted in a synergistic anticancer effect. The data obtained demonstrate, that fucoidan and its 2,4diO-sulfated derivatives can be an effective adjunct in TNBC therapy targeting cell metabolism.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Peso Molecular , Fucose , Antineoplásicos/farmacologia , Glicosídeos
4.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203394

RESUMO

Sulfated polysaccharides of brown algae, fucoidans, are known for their anticoagulant properties, similar to animal heparin. Their complex and irregular structure is the main bottleneck in standardization and in defining the relationship between their structure and bioactivity. Fucoidan-active enzymes can be effective tools to overcome these problems. In the present work, we identified the gene fwf5 encoding the fucoidan-active endo-fucanase of the GH168 family in the marine bacterium Wenyingzhuangia fucanilytica CZ1127T. The biochemical characteristics of the recombinant fucanase FWf5 were investigated. Fucanase FWf5 was shown to catalyze the endo-type cleavage of the 1→4-O-glycosidic linkages between 2-O-sulfated α-L-fucose residues in fucoidans composed of the alternating 1→3- and 1→4-linked residues of sulfated α-L-fucose. This is the first report on the endo-1→4-α-L-fucanases (EC 3.2.1.212) of the GH168 family. The endo-fucanase FWf5 was used to selectively produce high- and low-molecular-weight fucoidan derivatives containing either regular alternating 2-O- and 2,4-di-O-sulfation or regular 2-O-sulfation. The polymeric 2,4-di-O-sulfated fucoidan derivative was shown to have significantly greater in vitro anticoagulant properties than 2-O-sulfated derivatives. The results have demonstrated a new type specificity among fucanases of the GH168 family and the prospects of using such enzymes to obtain standard fucoidan preparations with regular sulfation and high anticoagulant properties.


Assuntos
Endometriose , Fucose , Animais , Feminino , Humanos , Catálise , Anticoagulantes/farmacologia , Polissacarídeos , Sulfatos
5.
Carbohydr Polym ; 246: 116635, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32747270

RESUMO

Structure of the fucoidan from Sargassum horneri and products of its enzymatic transformation with molecular weight over 20 kDa were investigated. Fucoidan was hydrolyzed by recombinant fucoidanase FFA1 and its fraction of higher molecular weight was fractionated using anion-exchange chromatography, resulting in three sulphated polysaccharides of various molecular weight (63-138 kDa). Their structures were analyzed using NMR spectroscopy, showing the fucoidan (ShF) to be a branched polysaccharide with the backbone consisting of the repeating →3-α-l-Fucp(2SO3-)-1→4-α-l-Fucp(2,3SO3-)-1→ fragment and side chains including the α-l-Fucp-1→2-α-l-Fucp-1→ or α-l-Fucp-1→3-α-l-Fucp(4SO3-)-1→ fragments attached to the main chain at C4. The fragment F3 differing by molecular weight and side chain from other fucoidans fragments possessed the most significant anticancer and radiosensitizing activities.


Assuntos
Antineoplásicos/farmacologia , Células Epiteliais/efeitos dos fármacos , Polissacarídeos/farmacologia , Radiossensibilizantes/farmacologia , Sargassum/química , Proteínas de Algas/química , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Biotransformação , Sequência de Carboidratos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta a Droga , Células Epiteliais/patologia , Células Epiteliais/efeitos da radiação , Glicosídeo Hidrolases/química , Humanos , Hidrólise , Peso Molecular , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/metabolismo , Radiossensibilizantes/química , Radiossensibilizantes/isolamento & purificação , Radiossensibilizantes/metabolismo , Proteínas Recombinantes/química , Raios X
6.
Biomolecules ; 8(4)2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30248971

RESUMO

Fucoidans belong to a structurally heterogeneous class of sulfated polysaccharides isolated from brown algae. They have a wide spectrum of biological activities. The complex structures of these polysaccharides hinder structure-activity relationships determination. Fucoidan sulfatases can make useful tools for the determination of the fine chemical structure of fucoidans. In this study, identification and preparation of two recombinant sulfatases able to catalyze the cleavage of sulfate groups from fragments of fucoidan molecules is described for the first time. Two genes of sulfatases swf1 and swf4 of the marine bacterium Wenyingzhuangia fucanilytica CZ1127T were cloned and the proteins were produced in Escherichia coli cells. Sulfatases SWF1 and SWF4 are assigned to S1_17 and S1_25 subfamilies of formylglycine-dependent enzymes of S1 family (SulfAtlas). Some molecular and biochemical characteristics of recombinant fucoidan sulfatases have been studied. Detailed specificity and catalytic features of sulfatases were determined using various sulfated fucooligosaccharides. Structures of products produced by SWF1 and SWF4 were established by nuclear magnetic resonance (NMR) spectroscopy. Based on the obtained data, the enzymes are classified as fucoidan exo-2O-sulfatase (SWF1) and fucoidan exo-3O-sulfatase (SWF4). In addition, we demonstrated the sequential action of sulfatases on 2,3-di-O-sulfated fucooligosacchrides, which indicates an exolitic degradation pathway of fucoidan by a marine bacterium W. fucanilytica CZ1127T.


Assuntos
Polissacarídeos/genética , Sulfatases/genética , Bactérias/química , Bactérias/genética , Escherichia coli/genética , Polissacarídeos/biossíntese , Polissacarídeos/química , Relação Estrutura-Atividade , Especificidade por Substrato , Sulfatases/biossíntese , Sulfatases/química
7.
Carbohydr Polym ; 175: 654-660, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917914

RESUMO

Structure and anticancer activity of fucoidan from Sargassum horneri and from products of its enzymatic transformation were investigated. A gene that encodes fucoidanase ffa1 in the marine bacteria F. algae was identified, cloned and the protein (FFA1) was produced in Escherichia coli. The mass of the gene product FFA1 is 111kDa. Sequence analysis has revealed that fucoidanase FFA1 belongs to the GH107 (CAZy) family. Recombinant fucoidanase FFA1 was used to produce fucooligosaccharides. Structure of 5 sulphated oligosaccharides with polymerization degree 4-10 was established by NMR-spectroscopy. The fucoidan extracted from S. horneri is almost pure fucan. The main chain of the fucoidan is established to consist mostly of the repeating →3-α-l-Fucp(2SO3-)-1→4-α-l-Fucp(2,3SO3-)-1→ fragment, with insertions of →3-α-l-Fucp(2,4SO3-)-1→ fragment. Unsulphated side chains with the α-l-Fucp-1→2-α-l-Fucp-1→ structure connect to the main one at the C4 of monosaccharide residue.


Assuntos
Antineoplásicos/química , Polissacarídeos/química , Sargassum/química , Sulfatos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Glicosídeo Hidrolases/metabolismo , Humanos , Polissacarídeos/farmacologia
8.
Glycobiology ; 27(3): 254-263, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28031251

RESUMO

A gene that encodes fucoidanase ffa2 in the marine bacterium Formosa algae strain KMM 3553T was cloned, and the protein (FFA2) was produced in Escherichia coli. Recombinant fucoidanase FFA2 was purified, and the biochemical properties of this enzyme were studied. The amino acid sequence of FFA2 showed 57% identity with known fucoidanase FcnA from Mariniflexile fucanivorans. The mass of the gene product FFA2 is 101.2 kDa (918 amino acid residues). Sequence analysis has revealed that fucoidanase FFA2 belongs to the GH107 (CAZy) family. Detailed substrate specificity was studied by using fucoidans from brown seaweeds as well as synthetic fucooligosaccharide with distinct structures. Fucoidanase FFA2 catalyzes the cleavage of (1→4)-α-glycosidic bonds in the fucoidan from Fucus evanescens within a structural fragment (→3)-α-l-Fucp2S-(1→4)-α-l-Fucp2S-(1→)n but not in a fragment (→3)-α-l-Fucp2S,4S-(1→4)-α-l-Fucp2S-(1→)n. Using synthetic di-, tetra- and octasaccharides built up of the alternative (1→4)- and (1→3)-linked α-l-Fucp2S units, the difference in substrate specificity and in the rate of enzymatic selectivity was investigated. Nonsulfated and persulfated synthetic oligosaccharides were not transformed by the enzyme. Therefore, FFA2 was specified as poly[(1→4)-α-l-fucoside-2-sulfate] glycanohydrolase. This enzyme could be used for the modification of natural fucoidans to obtain more regular and easier characterized derivatives useful for research and practical applications.


Assuntos
Flavobacteriaceae/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Polissacarídeos/metabolismo , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Glicosídeo Hidrolases/metabolismo , Glicosídeos/química , Glicosídeos/metabolismo , Oligossacarídeos/química , Oligossacarídeos/genética , Polissacarídeos/química , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...